Повторные независимые испытания

  • Формула Бернулли.
  • Формула Пуассона.
  • Интегральная и локальная теоремы Муавра-Лапласа.
  • Наивероятнейшее число появлений события в независимых испытаниях.
  • Полиномиальная схема.
  • Производящая функция.

Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №29.4

 В группе из 10 студентов, пришедших на экзамен, 2 подготовленных отлично, 1 — хорошо, 4 — посредственно и 3 — плохо. В экзаменационных билетах имеется 20 вопросов. Отлично подготовленный студент может ответить на все 20 вопросов, хорошо подготовленный — на 16, посредственно — на 10, плохо — на 5. Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что он подготовлен плохо.


Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №18.4

 Произведено 3 независимых испытания, в каждом из которых событие A происходит с вероятностью 0,2. Вероятность появления другого события B зависит от числа появлений события A; именно, она равна 0,1 при однократном появлении A , 0,3 — при двукратном и 0,7 — при трехкратном; если событие A не произошло ни разу, то событие B невозможно. Определить наивероятнейшее число появлений события A , если событие B имело место.


Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №28.4

 Происходит бой между A и B. У A в запасе два выстрела, у B — один. Начинает стрельбу A: он делает по B один выстрел, причем вероятность поражения B равна 0,2. Если не поражен, он стреляет и поражает A с вероятностью 0,3. Если B промахивается, A делает последний выстрел и поражает B с вероятностью 0,4. Найти вероятность того, что в бою будет поражен B.


Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №24.4

 В группе из 10 студентов, пришедших на экзамен, 3 подготовленных отлично, 4 — хорошо, 2 — посредственно и 1 — плохо. В экзаменационных билетах имеется 20 вопросов. Отлично подготовленный студент может ответить на все 20 вопросов, хорошо подготовленный — на 16, посредственно — на 10, плохо — на 5. Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что он подготовлен отлично.


Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №23.4

 Прибор может работать в двух режимах: нормальном и аварийном. Нормальный режим наблюдается в 80% всех случаев работы прибора, аварийный — в 20%. Вероятность выхода прибора из строя за время t в нормальном режиме равна 0,1; в аварийном — 0,7. Найти полную вероятность выхода прибора из строя за время t .